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Abstract— Various aspects and characteristics of the void propagation equation are discussed. This
equation predicts the transient response of the volumetric concentration to perturbations of (1) power
input, (2) inlet flow, (3) system pressure, (4) thermodynamic nonequilibrium, (5) compressibilities of the
vapor and of the liquid and (6) body forces acting on the two-phase mixture. This transient response is
predicted both as function of space and function of time.

Solutions of the void propagation equation are derived for the following operating conditions: (1)
constant power and inlet flow, (2) oscillatory power input, (3) oscillatory inlet flow and (4) oscillatory power
and oscillatory flow.

It is shown that perturbations of the mixture density are propagated through the two-phase mixture
by the velocity of kinematic waves. Expressions which predict the rate of propagation of these waves and
which are appropriate to the operating conditions listed above are presented.

The finite rate of propagation of kinematic waves introduces a “‘delay time” which characterizes the
response of the volumetric concentration to various perturbations. The “delay times”, appropriate to the
operating conditions enumerated above, are also presented.

The predicted results are compared to available experimental data, satisfactory agreement is shown,

NOMENCLATURE v, velocity [L/T] ;

MLT@ system of units, with H defined by V,»  drift velocity of the vapor [L/T];
= ML¥T2 Vi drift velocity of the liquid {L/T];
A cross-sectional area [L*]; D a 0
C.  velocity of kinematic wave [L/T]; Ff =5 T s total derivative follow-
Co.  distribution perimeter [—]; ! . 01. i - e
D. diameter of the duct [L]; ing fiquid particie;
E,  energy [H/M]; b, _2¢ ¢ vati
g acceleration due to gravity [L/T?]; D/ Tat U total derivative follow-
h, heat-transfer coefficient [HL™2 T~! ing vapor particle;

e 1; z, distance in the axial direction [L].
i, enthalpy of the liquid [H/M];
g enthalpy of the vapor [H/M]; Greek symbols
Ais,, latent heat of vaporization [H/M]; x, vapor volumetric concentration [—];
Js volumetric flux density [L?/TL?]; r, rate of mass formation per unit
L, boiling length [L]; volume [M/OL*];
P, pressure [M/T?]; a, surface tension [ML/T?L];
t, time [T]; 2, mass density [M/L*];
AT, temperature difference: Ap, pr — p, [IML7?];
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Q, characteristic  reaction frequency
[T°'];

T, evaporation time constant [T];

<, heated perimeter [L];

wy, frequency of inlet flow oscillation

[T™'];

,, frequency of input power oscilla-
tion [T~ '].

Subscripts

jA liquid ;

d, vapor ;

m, mixture

r, relative;

fi liquid inlet.

Dimensionless group

€, €5 power and inlet flow oscillation ampli-
tude;
v'¥, see equation (61);
I*, see equation (30):
I, see equation (41);
o, see equation (32);
t*, see equation (29);
z*, see equation (38);
w*, see equation (50);
I see equation (51);
{ >, average value across duct cross-sec-
tion.

1. INTRODUCTION

1.1 Previous work
THE ABILITY to predict the transient response
of the volumetric concentration in a two-phase
system is of considerable importance to present
technology. For example, analyses and accurate
predictions of the dynamic characteristics of
nuclear reactors, space power plants, marine
propulsion systems, chemical process apparatus,
etc., depend on the correct formulation of the
transient response of the volumetric concentra-
tion. Consequently, there have been numerous
publications concerned with this problem.

The different methods which have been used
to analyse the problem are discussed in more

detail elsewhere [1, 2]. It was noted there that
the problem was formulated either in terms of
questionable methods or in terms of an in-
complete set of equations describing the con-
servation laws for the mixture.

With exception of reference [3] all analyses
which consider the conservation equations were
formulated in terms of (1) the momentum equa-
tion for the mixture, (2) the energy equation of
the mixture and (3) one equation of continuity,
1.e. the continuity equation for the mixture. This
is most surprising since it is well-knownt that
for multi-component or multi-phase system the
number n, of continuity equations is equal to the
number n of the components or of the phases.
It is customary to add these n equations in one
continuity equation for the mixture, and to ex-
press the remaining n — 1, equations as diffusion
equations. With exception of reference [3]. who
consider a diffusion equation for the vapor. this
was never done in analyses of boiling, two-phase
flow systems. As noted above, all analyses deal-
ing with the transient response of a boiling
mixture were formulated in terms of only one
equation of continuity, i.e. the continuity equa-
tion for the mixture. No reference was ever made
to either the continuity equations of the con-
stituents or to the resulting diffusion equation.

1.2 Purpose of this article

The questions of interest in an analysis of the
transient behavior of a two-phase flow system
are:

(1) How can the change of volumetric con-
centration «, as it passes through the
system be predicted in advance?

(2) When will such a change reach a given
point in the system?

(3) As the variation of the volumetric con-
centration a, moves along the duct will
the variation spread out or will it become
more concentrated, and how fast?

+ See. for example, reference [4].
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In analyses of multi-component systems (for
example mixture of gases) it has been customary
in the past to seek the answer to the three ques-
tions above by formulating the problem in
terms of Fick’s diffusion equation and by deter-
mining the diffusion coefficient from experiment.
The same approach could be used in analysing
the transient response of a forced convection,
boiling system were it not for the fact that no
data are available in the literature on the diffu-
sion coefficient in such a system.

Instead of seeking a solution in terms of the
diffusion equation, it was shown analytically
and verified experimentally in reference [5] (by
bubbling air through water) that the kinematic
wave theory [ 6, 7] provides a convenient answer
to the three questions posed above. The kine-
matic wave theory was developed by Lighthill
and Whitham [6, 7] for analysing flood waves
and traffic flow on highways. Indeed, the ques-
tions which were raised above and which are of
interest to the chemical process industry and to
the nuclear reactor technology, are identical
with those raised by Lighthill and Whitham in
connection with the flow of cars.

The kinematic wave theory was apparently
first applied [8] to analyse the transient response
of a dispersed two-phase (solid—gas) system. It
has been successfully applied to analyse both the
transient response and the operating limits of
fluidized systems in the absence of a change of
phase [9-11]. The relation between an analysis
formulated in terms of kinematic waves and an
analysis formulated in terms of the diffusion
equation is given in references [11-13]; it is
also summarized in the Appendix A.

A general expression which can be used to
predict the transient response of the vapor
volumetric concentration in a two-phase sys-
tem with a change of phase has been derived
[1, 2]. The resulting void propagation equation,
which was formulated and expressed in terms of
kinematic waves, gives the response of the vapor
volumetric concentration to variation of: (1)

t Further references are given in reference [ [1].
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power density, (2) pressure, (3) energy storage in
the vapor, (4) compressibilities of the liquid and
of the vapor, (5) flow rate and (6) gravitational
force field, i.e. of the body forces. This general
expression for predicting the void response is
compared [1, 2] to the analytical results re-
ported previously and, in particular to the
results of Kanai er al. [14].

It has been shown [15, 16] that both the rate
of propagation as well as the wave form of the
void disturbance predicted by the void propaga-
tion equation were in good agreement with the
experimental data reported. In these experi-
ments, performed in a forced convection loop
with boiling Refrigerant 22, the oscillatory power
input to the fluid was of the form of [1 + a?
sin> wt + 2a sin wt] whereas the vapor void
response was determined by means of X-ray
attenuation. The same expression for the power
input was used in the computer solution of the
void propagation equation in order to compare
the predicted results with experimental data.
Figure 1, which is reproduced from reference
[15, 16] shows such a comparison. It can be seen
that the oscillatory volumetric concentration
{a) predicted by the analysis at different times
and at different locations along the heated duct
are in agreement with the experimental data.

It is of interest to reactor kinetics and to the
chemical industry to predict the vapor void
response when the oscillatory power input term
is of the form of (1 + ¢, sin w,t). It is of further
interest to predict the vapor void response to
inlet flow oscillations of the form (1 + ¢, sinw ).

It is therefore the purpose here to derive closed
form analytical solutions of the void propaga-
tion equation which give the response of the
vapor volumetric concentration to these two
perturbations. In particular we shall obtain
solution of the void propagation equation for the
following cases: (1) constant power input, (2)
oscillatory power input, (3) oscillatory inlet flow
and (4) both power input and inlet flow oscilla-
tory. The solutions are presented in dimension-
less form so that they can be applied to various
systems of practical interest.
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Fic. 1. Comparison of calculated and measured volumetric concentration for

oscillating heat input where wt =

0 at zero time. Reduced pressure = 0:22;

average g = 4820 Btu/h ft? (see reference [ 16]). Arrows refer to maximum power

input to wall and fluid respectively.

Distance from heated inlet (ft)

¥ 052
] 113
A 201

2. FORMULATION OF THE PROBLEM

2.1 The frame of reference

In a two-phase flow system the velocities of
the two phases are never equal, ie. there is
always a relative motion of one phase with
respect to the other. Consequently, a two-phase
flow problem must be always formulated in
terms of two velocity fields. However, there are
several velocity fields which are useful in

O 294
@ 454

analysing various aspects of a two-phase flow
system.t Depending upon the particular aspect
one can select a reference frame and formulate
the problem in terms of the velocity ficlds that
are most representative of and appropriate to
the solution of that particular problem.

In transient void (or holdup) problems, it is of

+ A more detailed discussion is given elsewhere [17].
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interest to determine the response of the volu-
metric vapor concentration to various perturba-
tions such as power, flow, pressure, etc. For this
particular two-phase flow problem, it is then
advantageous to formulate the analysis [1, 2] in
terms of the velocity of the center of volume },
and of the drift velocity V,; and V ;; of the vapor
and of the liquid with respect to j.

Let v, and v, be the local point values of the
velocities of the liquid and of the vapor and let
o be the local point value of the volumetric
concentration of the vapor, then we define the
volumetric flux densities of the liquid j,, and
the vapor j,, by

ip =00 — ajv, (1)
iy = o, @

and the volumetric flux density of the mixture
by:

i=irt+i, 3)
which in view of equations (1) and (2) can be
expressed as:

i=0 -y, + av, 4)

Two observations are of interest. First, we
note that equations (1), (2) and (4) correspond,
mathematically, to the definitions of the number
velocities in the kinetic theory of gases. Second,
we note that equation (4) is an average velocity
of the mixture obtained by weighing the re-
spective velocities of the two phases by weight
factors (1 — «) and « which are proportional to
the two volumes occupied by the liquid and by
the vapor phase respectively. Consequently,
equation (4) can be interpreted either as the
local volumetric flux density of the mixture or
as the velocity of the center of volume of the
mixture.

The expression for j, which was derived [1, 2]
for the case of one-dimensional flow of a two-
phase mixture with a change of phase is given
by:

j= v+ [M&_uﬂf&
Pr Py py Dt

o Dyp,
_ 2Py, (5
. Dt]z B

where v, is the inlet liquid velocity; p, and p,
are the densities of the liquid and of the vapor;
I'; is the vapor source term which is discussed in
the section that follows and total derivatives are
defined by:

D_o, 0
Dt o T
(6)
&—a_i_vg_
Dt dt ‘oz

Consequently, the last two terms on the right-
hand side of equation (5) represent the effect of
the compressibilities of the two phases.

It can be seen from equation (5) that the velo-
city j, of the center of volume, i.e. the volumetric
flux density of the mixture at a given point in the
system, depends on the inlet velocity and on the
integrated effect of the vapor generation in the
test section decreased by the effects of the com-
pressibilities of the two phases.

Taking now a reference frame which moves
with the velocity j, we define the local drift
velocities with respect to the center of volume of
the mixture by:

Vii=v—1] (7
and
vV, = Vg — j (8)

g]

It was shown [18-20] that the drift velocity
of the vapor depends upon the flow regime of
the two-phase mixture. The various expressions
for V,;, appropriate to the various flow regime,
are given together with a general method for
determining the drift velocity. It was also shown
that for a number of flow regimes, such as the
turbulent bubbly flow, the slug flow etc., the
drift velocity V,; does not depend upon the void
fraction a. For example, for the churn turbulent
bubbly flow, the vapor drift velocity is given by :

Ap 1¥
Ps

9
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whereas for the slug flow regime it is given by:
%

Voi = 035 [gApD:l
Py

Additional expressions are listed in references
[18-20].

(10)

2.2 The vapor source term

The one-dimensional equation of continuity
for the vapor in a two-phase mixture with a
change of phase is given by:

dp,o.  O[ap,v,] _r

ot 0z g (n

The vapor source term I, has the same mean-
ing as the mass source term in the continuity
equation for a given species undergoing a
chemical reaction. Consequently, in order to
specify I',, it is necessary to specify the constitu-
tive equation for the process.

The constitutive equation for chemical reac-
tions are given in terms of the reaction rates.
For a two-phase mixture, the problem is con-
siderably more complicated, because the con-
stitutive equation will depend not only upon the
mode of mass transfer, but also upon the topology
of the interface, i.e. whether it is spherical,
cylindrical, plane, etc. The expression for the
vapor source term [, will depend therefore upon
the flow regime.

The constitutive equations for a two-phase
flow mixture with a change of phase are dis-
cussed further elsewhere [17] together with the
expressions for I'y appropriate to the various
flow regimes. For the purpose of this paper we
note that the vapor source term I', can be also
obtained from the energy equation for the mix-
ture when expressed in term of the convected
coordinates [17].

The energy equation for the two-phase mix-
ture is [17]:

{
, — E;) = hAT (f)

P d¢
— ~= (12
+ 3 + Pm or (12)
where we have neglected the effects of frictional
heating. In equation (12) the convected deriva-
tives are given by equation (6), the density of the
mixture p,, is given by

(13)

whereas the energies E, and E, are given by:

Pm = (I - a)pf + (xpg

v

SIASH

(14)

LZ
Eg=i,+—>+¢
where i, and i, are the enthalpies of the liquid
and of the vapor.

The term ¢ in equations (12) and (14) is the
potential energy. For most terrestrial systems of
practical interest body forces other than gravity
are unimportant. For these systems then the
potential energy is time independent and it is
given by:

¢ =gz (15)

However, when the body forces are functions of
time, as may be the case for marine and space
systems under certain operating conditions, then
the potential energy is a function of time whence
0¢
3 # 0.
The significance of the various terms, which
appear in equation (12), are as follows. The first
two terms on the left-hand side account for the
lack of thermodynamic equilibrium (i.e. for the
subcooling or superheating) in the liquid and
in the vapor phase. The third term represents the
energy required to generate a given mass of
vapor per unit time per unit volume. The first
term on the right-hand side represents the power
input per unit volume of the mixture. The second
term accounts for the effects of system pressure
variations on the energy content; whereas the
last term accounts for the time dependent body
force.

(16)
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It can be seen from equation (12) that when the
terms on the right-hand side are given then the
vapor source term can be determined if it is
assumed that both the liquid and the vapor are
in thermodynamic equilibrium.t However, if
thermodynamic equilibrium is not attained,
then information on the constitutive equation,
appropriate to the particular flow regime, is
required.

2.3 The void propagation equation

The void propagation equation for a two-
phase flow system with a change of phase which
was derived in references [1, 2] is given by:

oa oo
. + Ckg

ot

where C, is the velocity of kinematic waves and
Q is the characteristic reaction frequency. The
relation between this equation and the standard
formulation in terms of the diffusion equation
is discussed in more detail elsewhere [12, 13], it
is also summarized in Appendix A. Before pro-
ceeding further, it is advantageous to discuss
the significance of the various terms in equa-
tion (17).

The void propagation equation shows that
changes in the volumetric concentration «,
are transmitted through the system by the
velocity of kinematic waves C,. This velocity
can be expressed as:

=0 (17)

. oV
or, in view of equation (8), as:
v
Co=10v,+ a2 (19)

Oa

t Note that the statement thermodynamic equilibrium is
equivalent to an assumption of a constitutive equation for
evaporation, i.e. of an equation describing a particular process
of vapor formation. In this particular case it corresponds to
a process where the energy is transferred from the heating
surface to the vapor without any time delay and energy
storage in either the liquid or the vapor [see equation (12)
for the case when i, and i, are constant].
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Three important observations can be made with
respect to equations (18) and (19).

(1) Since the vapor drift velocity V,; depends
upon the flow regime, equations (17) and (18)
show that the transient void response will de-
pend also upon the flow regime. This conclusion
has been already verified in the experiments
reported in reference [5].

(2) Since changes of the volumetric concentra-
tion a, are propagated with the velocity of kine-
matic waves C,, equations (17) and (19) show
that changes of o will propagate backwards or
Jorwards with respect to the velocity of the
vapor, ie. C; < v, or C; > v, depending on
whether the vapor drift velocity V,; decreases
(0V,;/0a < 0) or increases (CV,;/da > 0) with
increasing o«. When V,; does not depend upon
a then €, = v, and the void perturbations pro-
pagate with the local vapor velocity.

(3) Since the velocity of kinematic waves C,,
depends upon the volumetric flux density of
the mixture, equations (5) and (18) show that
the kinematic wave velocity depends upon the
inlet conditions and upon the integrated effect
of the vapor generation in the test section de-
creased by the effects of the compressibilities of
the two phases.

In view of the foregoing it can be seen that, at
a given location, the velocity of the kinematic
waves takes into account (1) the effect of flow
regime, (2) the entrance effect and (3) the effect
of the past history of the mixture as it flows
through the heated duct.

The characteristic reaction frequency Q in
equation (12), is given by [1, 2].

r 1D
Q="Fmle al - oc)|:~ﬂ
Py Pg pr Dt

I Dyp,
o D ] (20)

It can be seen from equation (20) that the charac-
teristic reaction frequency takes into account the
local effects of the vapor generation and of the
compressibilities of the two phases. This is in
contrast to the velocity of kinematic waves which,
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as noted above, depends upon the integrated
effect of these three terms.

Substituting equations (20), (18) and (5) into
equation (17), the void propagation equation
for a two-phase mixture with a change of phase
becomes :

é aov.
g { +V+a iy
¢ Co

p; Dt p, Dt 0z
r 1D 1D
Pnly | 4 ,[_ﬂ__ﬂ] o
Ps Py py Dt p, Dt

with the vapor source term I, given by equation
(12) thus

1 G\ oP
r,= T(=") + -
=g ()

d¢
+ pmg—(l — a)p

DE,
Dt

D,E,
Di ] (22)

It can be seen from equations(21) and (22) that
the void propagation equation predicts the
void response to perturbations of: (1) flow rate,
(2) power input, (3) system pressure, (4) thermo-
dynamic nonequilibrium, (5) compressibilities
of the two phases and (6) of the body forces.

The volumetric concentration in equation (21)
is the value of o at a given point in the system.
In practice one is interested in the value of «
averaged over the cross-sectional area of the
duct. The difference between these two values
of o is caused by the nonuniform flow and con-
centration profiles.

In order to express equation (21) in terms of
the average volumetric concentration, we follow
the method presented previously [18-20]. We
define the value of a quantity F averaged over
the cross-sectional area by:

—_ apq

1
Fy = JFdA (23)

A
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and the weighted mean value of F by
_ 11
F=—— FdA
ay A Ja
A

Thus, in view of equation (24), we define the
weighted mean drift velocity of the vapor by:

o _ <abp
V.. =
2] <(X>

In most problems of practical interest the
compressibilities of the liquid and of the vapor
can be neglected. Similarly, toa good approxima-
tion, the densities of the two phases remain
constant in a cross-sectional area of the duct,
i.e. they do not depend upon the radius of the
duct. Consequently, it is permissible for the
purpose of this paper, to use these two simplifying
assumptions when evaluating the average value
of a.

By means of equations (23) to (25) and follow-
ing the presentation [ 1, 2] the void propagation
equation can be expressed in terms of the average
volumetric concentration <o), thus

(24)

(25)

6(0:) 0
Cov.
N Colp [ I'p dv:l oad
pf ¥ pg E’Z

:[1 —COAP< >]§£—g>

where the distribution parameter C,, is defined
by

(26)

o= *QL)* (27)
<>

It takes into account the effects of the non-
uniform flow and concentration profiles [ 18-21].
It has been shown [ 18-20] that in vertical up-
ward flow through a circular duct, when the
volumetric concentration is highest at the center
of the duct, the distribution parameter C,, can
vary between 1-0 and 1-5. However, when the
concentration is highest next to the duct walls
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(as may be the case in subcooled boiling) the
distribution parameter can have a value smaller
than unity [18]. It was also shown that, for a
number of flow regimes, with established pro-
files of the flow and of the concentration both C,
and the weighted mean drift velocity V,;, of the
vapor remain essentially constant but that both
change with a change of flow regime, i.c. with a
redistribution of the flow and concentration.
The values of C, and of V,; appropriate to the
regimes as well as the method for determining
them were given [18-20].

In what follows we shall solve equation (26),
however, in order to generalize the results we
shall first express equation (26) in dimensionless
form.

2.4 The dimensionless form of the void propaga-
tion equation and the general form of the
solution

In order to render the void propagation equa-
tion dimensionless we define the dimensionless
length by:

. Z

z* = L (28)
where L, is the length of the duct along which
the process of evaporation takes place. In what
follows, we shall consider those flow regimes for
which the vapor drift velocity-does not depend
upon time ; we define then the dimensionless time
by:

t* = Covfi + V;H't (29)
L,
the dimensionless vapor source term by :
‘ A
oo Ly U (30)

®ps Covsi + Vo £y

and the dimensionless velocity of kinematic
waves by:

z

Ct=1+[rI*ds* 31)

The resulting equation can be simplified if we
define the volumetric concentration by:

A
a* = C, 2e (a). (32)
Ps
Substituting equations (28) to (32) into equa-
tion (26), the dimensionless form of the void
propagation equation becomes:
oa* oa*

~ + CF

v T g =l

(33)
When the vapor source term I'* does not de-
pend upon the volumetric concentration, then
equation (33) is a first-order linear partial differ-
ential equation whose solution can be obtained
by means of characteristics [22, 23]. The general
solution of equation (33) is of the form:

uy = fluy) (34)
where
ufo*, t*, z*] = C, and
u,(a*, t*, z*) = C, (35)

are solutions of any two independent differential
equations which imply the relationships

dz* da*

dt* = — =
cr

A= (36)
For example, by taking alternately the first and
the second equation, the first and the third
equation we obtain

dz*
=t 37)
and
d %*
?1% = (1 — a™r* (38)

which, for the initial and boundary conditions
givenby:z* = 0,0* = 0, * = t§, yield the follow-
ing solutions:

z*

dz*
t — 1} = o3 (39)
and
t*
a* =1—exp[— [ *dr*] (40)
i8
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We shall here consider systems in thermo-
dynamic equilibrium, we shall neglect therefore
the effects of superheat or of subcooling.t Since
we are interested in the effects of power and flow
oscillations on the volumetric concentration we
shall neglect also the effects of pressure variations
and of the time dependent body forces.

In what follows, we shall obtain solutions of
the void propagation equation for the following
cases: (1) constant power input, (2) oscillatory
power input, (3) oscillatory inlet flow and (4) both
power input and inlet flow oscillating.

3. CONSTANT POWER INPUT AND INLET FLOW

Neglecting in equation (22) the effects of
pressure variations, of variable body forces and
of thermodynamic nonequilibrium, and substi-
tuting the resulting expression in equation (30),
we obtain for the dimensionless vapor source

. % q (CbLb)
8= 6o, PAL(Covyi + Vo) \ A, @
with hAT = g, where q is the power input to the
liquid.

The dimensionless velocity of kinematic waves,
given by equation (31), then reduces to

C¥ =1 + I'*z*

(42)

Substituting this expression in equation (36),
the volumetric concentration a*, as function of
distance, is obtained from the second and third
term in equation {36), thus

* %
«_ T3z

BEN “3)

Introducing in equation (43) the expressions
for z*, o* and I'*, given by equations (28), (32)
and (41) respectively we obtain the equation
which predicts the vapor volumetric concentra-
tion in a uniformly heated duct when the inlet

+ We note that in systems where the inlet temperature is
below saturation, the degree of subcooling has a considerable
effect on the transient response of the void fraction. The
result of an investigation concerned with this aspect of the
problem will be reported seaparately.

NOVAK ZUBER and F. W. STAUB

liquid is at saturation temperature, ie. in
absence of subcooling, thus:

(ap =
(Q/pgAifg)(Chl/Ac)z
Covyi + Vg
+ ColAp/p Na/pghir Ml Ac)z

which is of the same form as the expression de-
rived previously [18-20] using a different
method.

Substituting equation (42) in (39) and equation
(41) in (40), we obtain respectively:

CF = exp [T¥(1t* — t§)]

(44)

{45)
and

¥ =1 —exp[—T&t* ~t¥)]  (46)

The latter equation can be expressed in terms of
dimensional quantities; thus for equations (46),
{41), (32) and (29), we obtain:

A
Co=E ¢y =
Py

Ap q (C;,) J
1l —exp{—Co———| 22t — t5)]. (47)
P [ ° Pr pgAlfg Ac °

Both equations (46) and (47) show that the vapor
volumetric fraction is an exponential function
of time which is a characteristic of chemical
reactions. For this problem the reaction fre-
quency is given by

A b
Q=c, 224 o

° Ps pyAify A,

Figure 2 shows the values predicted by equa-
tion (44) together with the experimental data of
reference [19] for Refrigerant-22 in forced flow
through a circular duct. Figure 3 shows the
comparison with the experimental data of
reference [24] for water at 400 psi in forced flow
through a rectangular duct. In preparing these
figures the boiling length L, was taken equal to
the length of the duct. This equality results from
the assumption of thermodynamic equilibrium
which implies that the inlet liquid is at satura-
tion temperature and that boiling starts at the

(48)
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Fi1G. 2. Comparison of the void fraction for constant power input predicted by equation (44) with
experimental data in the churn-turbulent regime for Refrigerant-22 in a round tube [16].

entrance of the heated duct. This was indeed
the case for the data shown in Fig. 2. For the
data shown in Fig. 3 (run No. 7 in reference [24])
there was a slight subcooling of 1-5 deg F so that
the bulk liquid reached saturation temperature
at z* = 0-045 instead at z* = 0 as assumed in the
computations.} We note that had we corrected
the quality to take into account this sub-
cooling, the predicted curve would have shifted
to the right resulting in a slightly better agree-
ment with the experimental data. Nevertheless,

1 The other data reported in reference [24] had a higher
subcooling, consequently, they are not used here for com-
parison. They are shown in reference [20] together with an
analysis of the void fraction in subcooled boiling.

it appears from Figs. 2 and 3 that the predicted
results are in satisfactory agreement with the
experimental data. Additional comparisons are
shown elsewhere [19, 20].

The relations between the expressions that
have been derived in this paper and those derived
previously [25-28] for the case of homogeneous
flow, i.e. for the case when both phases move with
the same velocity, are given in Appendix B.

4. OSCILLATORY POWER INPUT
Let the oscillatory power input to the liquid
be given by:

q(t) = qo(1 + €, sin w,t) (49)
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and let the dimensionless frequency of the power
oscillation be defined by:
o, L
w¥f = —F _ 50
P COUfi + I/gj ( )
Then the dimensionless velocity of kinematic

waves, given by equation (31), becomes:
Cr =1+ TI'§(1 + ¢, sin wft*)z*  (51)

and the dimensionless vapor source term be-

comes:
Ir'* = T§( + ¢, sin w}t*) (52)

where I'§ is given by equation (41).
Substituting equation (52) in (38), ie. in

(40), results in:

af =1 — exp I:——Fg‘(t* — )

e,
+ —F(cos wpt* — cos w*tf)| (53)
wP
Substituting equation (51) in (37) gives:
dz* .
d—i* — T3l + ¢, sinwft*)z* =1 (54)

whose solution is given by:

* gk rgep ¥k
z¥exp | —I'§t* + — = cos wpt
w

p
—J exp |:—I‘3t*
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*
I'§e,
*

wl’

+

cos wjt*] dt* = constant (55)

The integral in equation (55) can be evaluated
by successive approximations. However, the
advantage of having an analytical solution is
then lost because of the complexity of the result-
ing general solution.

It is advantageous, therefore, to obtain an
approximate but simple, closed form solution
which, as it will be seen in what follows, is in
satisfactory agreement with the exact solution
obtained by means of a computer.

The simplification is obtained by letting
€, = 0 in equation (54). This implies that the
effect of oscillations is neglected when evaluating
the velocity of the kinematic waves given by
equation (51). We note that the effect of oscilla-
tions is not neglected in the source term. With
this assumption C, reduces to equation (42),
and equation (37) yields (45), thus:

THe* — tg) = In(1 + I'¥z*) (56)
This defines the delay time ¢}, thus:
1
=1 — —I:gln (1 + I'§z*) (57)

Substituting equation (56) in (53), we obiained
o* as a function of z* and t*, thus:

exp [(I'§e,/w¥)cos wkt*
— cos wity)]
1 4 Irz*

(58)

In view of equation (32), it can be seen that
equation (58) predicts the average volumetric
concentration {a), at various positions in the
heated duct and at various times a function of
the oscillatory power input. We note also if we
set ¢, = 0 in equation (58), we obtain again the
solution for case of constant power input given
by equation (43).

The values predicted by equation (58) are
plotted in Figs. 4-7. The values of the dimension-
less frequency w}, of the dimensionless vapor
source I'§ and of the dimensionless power ampli-
tude which have been used in preparing these

3L

figures cover a wide range of operating condi-
tions. _

Since equation (58) is subject to the assump-
tion of neglecting the effect of oscillations on the
velocity of kinematic waves it is of interest to
compare the values predicted by equation (58)
with the exact solution which takes into account
the effect of oscillation on C,. For this purpose
equation (33) was solved on a computer using
for C¥ and I'* the expressions given by equa-
tions (51) and (52) respectively. The resulting
solutions are plotted as full lines in Figs. 4-7.
It can be seen from these figures that the values
predicted by the approximate but simple, closed
form solution, i.e. by equation (58) are in rela-
tively satisfactory agreement with the exact,
computer solution. This is especially evident at
high values of wj irrespective of the magnitude
of I'§ (see Figs. 4 and 5). However, at a low value
of w} and at a high value of I'f§ the amplitude
predicted by equation (58) overestimates that
predicted by the computer (see Fig. 7).

Figures 8 and 9 show a comparison of the pre-
dicted results with the experimental data re-
ported in reference [24] (run No. 7) for oscilla-
tory power input to water at 400 psi. The full
lines are the computer solution whereas the
dashed curves are the values predicted by
equation (58). As in the case of constant power
(c.f. Fig. 3) the predicted values of () are higher
than the experimental data for low values of
z*. This is the consequence of inlet subcooling.
For higher values of z*, when the effect of inlet
subcooling is negligible, these figures show good
agreement between predicted and experimental
results. As noted previously an analysis of the
void response is subcooled boiling will be
reported separately. .

It appears from the foregoing that, when the
subcooling is negligible either the exact com-
puter solution or equation (58) can be used to
predict the transient response of the volu-
metric concentration to oscillations of the
power input to the fluid. This transient response
is given both as a function of time and a function
of space. This makes the void propagation equa-
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FiG. 4. Comparison of the oscillatory void fraction predicted by equation (58), with the computer solution
of equation (33).

tion particularly suitable for analyses of transi-
ents in fast, power reactors which use liquid metal
for coolant.

5. OSCILLATORY INLET FLOW

We consider now the void response to flow
oscillation when the power input is kept constant.
Let the inlet flow oscillation be described by :

vet) = vyl + €, sin o). (59)

We define the dimensionless frequency of the
flow oscillation by:

w,L,
V.

9]

wf = {60)

- COUfi +

and the dimensionless amplitude of the flow
oscillation by:

o = COUfiep

=__2Jir 61
Covyi + V; (o

Using these dimensionless groups together
with those defined in Section 2.3, we obtain
from equation (21) the dimensionless velocity
of kinematic waves, thus:

C¥ =1+ v*sinwk* + [ I*dz* (62)
0

which for a constant power input reduces to:

C¥=14+v*sinwft* + I'jz (63)
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where the vapor source term is given by equa-
tion (41).

We seek now the solution of the void propaga-
tion, i.e. of equation (33) with the value of C¥
given by equation (63). The solution is given again
by equation (34) where the u; and u, are the
solution of equations (37) and (38).

From equation (38), i.e. (40), we obtain the
expression for the delay time ¢} thus:

1
t3=t*+F;ln(1 — a¥) = u, (64)
0

whereas from equations (37) and (62) we obtain:

1
u, = t* —F—gln[l+1"32*

il S .
S (I} sin wkt*

+——
w¥? + T

+ ¥ cos w*t*)]. (65)

The general solution is then given by equation
(34), which in view of equations (64) and (65)
becomes:

0

1 1
t* E— —_ * = [
+ I In(1 — a¥) f{t T ln‘I:l
1% [k

0

+ I3z + — 0 0
0 w¥? + I'¥?

(I'¥ sin w*t*

+ w} cos w}t*)]} (66)
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The form of the function f can be evaluated from
the initial and boundary conditions. Thus for:
z* = 0,a* = 0, t* = t§ we find from equation

(66) that:

+ I'§z*

concentration {a), at various positions in the
heated duct and at various times as function
of the oscillatory inlet flow. We note that if we
set the dimensionless flow amplitude equal to

+ (V*T¥/w¥? + TE)IE sin wft* + w} cos wft*)

1 1
F(‘;ln

1 + (v*T§/w¥? + TE)(IE sin wity + wk cos wftd)

} (67)

Substituting equation (67) in (66), we obtain the following expression for a* thus:

1

o*

1 + (v*T§/w¥ + TEI§ sin wit, + of cos wft])

(68)

with the delay time t3 given by equation (64).

In view of equation (32), it can be seen that
equation (68) predicts the average volumetric

T 1t Iy (*TE/o¥* + TE)E sin wit* + w} cos wftd)

zero, i.e. v* = 0, in equation (68), we obtain
again the solution for constant power input,
1.e. equation (43).
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6. OSCILLATORY POWER INPUT AND
OSCILLATORY INLET FLOW

In this section we shall consider the case when
both power and flow oscillate. The expressions
for the two oscillatory terms are given by equa-
tions (49) and (59). We shall use also the same
definitions for the two frequencies given by
equations (50) and (60).

The velocity of kinematic waves is given by
equation (62) which, when the power also oscil-
lates, becomes:

C¥ =1+ v*sinoft* + I's(l + ¢,

sin wit*)z*  (69)

The dimensionless vapor source term for the
case of oscillating power input is given by
equation (52), i.e. by:

I'* = T'§(1 4 ¢, sin wyt*) (70)

where I'} is given by equation (41).

We seek now the solution of the propagation
equation, i.e. of equation (33) with the values of
C¥ and of I'* given by equations (69) and (70)
respectively. The computer solutions of this
problem are shown on Figs. 10 and 11 for two
cases, i.e. when the power and the flow oscilla-
tions are in phase and 180° out of phase re-
spectively. It can be seen that the void response
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the two oscillations are out of phase.

It is of interest also to obtain a simple analyti-
cal solution of the problem. For this purpose, we
shall introduce the same simplification which was

in Sections 4 and 5, we obtain:

used in Section 4, i.e. we shall neglect the effect
of power oscillations on the velocity of kine-
matic waves. Letting, therefore, ¢, = 0 in

1 — a* = exp [—Fé‘(t* — 1)

Tocp (cos w¥t* — cos w¥td
+ * P pto
p

equation (69) and following the procedure used

)} (71)
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where, for given z* and t*, the delay time t¥ is given by:

1 + (V*T'$/w¥* + TEHTE sin o}ty + of cos witd)

(72)

exp [—I§(* — §)] =

T 1+ I'Ez* + (O T3jwl? + T3)T§ sin 0it* + o cos wk)

In deriving equations (71) and (72), we have
used z* = 0, a* = 0, t* = t§, for the boundary
and initial conditions.

Since «* is related to {«) by equation (32),
and in view of equation (72), it can be seen that
equation (71) predicts the average volumetric
concentration (o>, as function of space and
time, when both power and inlet flow oscillate.
This solution is subject to the approximation
of letting ¢, = 0 in the velocity of kinematic
waves given by equation (69).

Three observations can be made with respect
to equations (71) and (72). First, we note that
if we let ¢, =0 in equation (71) then this
equation reduces to (68), whereas the delay
time predicted by equation (72) reduces to
that given by (64). Second, if we set v'* =0,
then equation (71) reduces to (58), whereas (72)
predicts the delay time given by (57). Finally, if
we set both ¢, = 0 and v"* = 0, then equations
(71) and (72) reduce to (43) and (56) respectively.
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7. SUMMARY AND CONCLUSIONS

In this paper we have discussed ang analysed
various aspects of the void propagation equa-
tion which predicts the response of the vapor
volumetric concentration to variations of (1)
power, (2) inlet flow, (3) system pressure, (4)
thermodynamic nonequilibrium, (5) compressi-
bilities of the vapor and of the liquid and (6) body
forces.

It is noted that since the void propagation
equation predicts the void response as function
of space and of time, it is particularly suitable
to analyses of transients in fast, power reactors
which used a liquid metal for coolant.

In this paper we have presented and discussed
the solutions of the void propagation equations

for the following operating conditions (1) con-
stant power input and constant inlet flow, (2)
oscillatory power input and constant flow,
(3) constant power input and oscillatory flow
and (4) oscillatory power and oscillatory flow.
In view of the assumptions which were made in
the analysis, the preceding solutions are ap-
plicable when (1) the system pressure is constant,
(2) the two phases are in thermodynamic equi-
librium, i.e. the inlet subcooling or superheat is
negligible, (3) the compressibilities of the liquid
and of the vapor are negligible, (4) the body
forces acting on the mixture are constant and
(5) the vapor drift velocity does not depend upon
the volumetric concentration.

The analysis shows that variations of the



THE PROPAGATION OF THE VAPOR VOLUMETRIC CONCENTRATION

volumetric concentration and, therefore, the
variations of the mixture density are propagated
through the two-phase mixture by the velocity
of kinematic waves. Expressions which predict
the rate of propagation of these waves and
which are appropriate to the operating condi-
tions listed above, have been presented.

Because it takes a finite time for kinematic
waves to propagate from one location in the
system to another, the response of the volu-
metric concentration to various perturbations is
characterized by various ‘“delay times”. The
delay times, appropriate to the operating con-
ditions enumerated above, have been also
presented.

The predicted response of the vapor volu-
metric concentration to modulations of the
power input to the fluid has been compared to
experimental data for water at 400 psi in forced
flow through a rectangular duct. Satisfactory
agreement of predicted results with the albeit
limited amount of available experimental data
for water was shown. A more extensive compari-
son with experimental data for Refrigerant-22
in forced flow through a circular duct shows an
equally satisfactory agreement.
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APPENDIX A

Relation to the Stanaard Formulation in Terms
of the Diffusion Equation

It has been customary in the past to analyse
problems concerned with the transient behavior
of the concentration in terms of the diffusion
equation, in particular, in terms of the Fick’s
law. In what follows, we shall show, briefly,
how this method can be related to the void
propagation equation based on kinematic waves.
A more detailed comparison is given in refer-
ences [11-13].

For simplicity we consider a binary system in
absence of chemical reactions; we shall neglect
the effects of compressibilities. For such a
system the continuity equation in terms of the
volumetric concentration {a) can be written
[29] as:

(1 —o)(V; — V;)]=0 (A-1)

It is conventional procedure in the literature
[29] to express the last terms in equation (A-1)
in terms of the binary diffusion coefficient D,,
thus:

a(l

do
—a)(Vy = V) = =Dy -

8z
Substituting equations (A-7) and (A-4) in
(A-2), we obtain:
oo
t oz

du O )
a—ﬁfa—a—z[l’

(A-2)

(A-3)
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In order to relate this equation to the void
propagation equation, we note that the drift
velocities of the vapor and of the liquid can be
expressed [17] as function of the relative velo-
city v,, thus:

ng = (1 - OC)U, (A'4)
V= —av, (A-5)

where the relative velocity between the two
phases is given by :

v, =1, — Uy {A-6)
or in view of equations (A-4) and (A-35), it is also
given by:

v Vi—V;

r = g.

g (A-7)
Substituting equations (A-7) and equation
(A-4) in (A-2), we obtain:

¥, = ol — a)(V,; — Vp).

)

(A-8)

Whence the continuity equation, i.e. equation
(A-1), can be written as:

oo . 0@V 60(_
'6'E+l:j+ ]"——

da |éz
which is the void propagation equation, ie.
equation (17) with the reaction frequency term
Q2 set equal to zero.

We note that in order to use equation (A-3),
it is necessary to determine, from experiments,
the value of the diffusion coefficient D,. Experi-
mental data on the diffusion coefficient for two-
phase flow systems are almost non-existent.
Another difficulty arises when the diffusion co-
efficient depends on the concentration; in such
a case equation (A-3) becomes a nonlinear
partial differential equation for which solutions
are not usually available.

In view of the foregoing, it appears that, in
two-phase flow systems, a formulation of the
problem in terms of kinematic waves offers at
least two advantages over a formulation in terms
of the diffusion equation. First, expressions for

0 (A-9)
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the vapor drift velocity V,; in two-phase mixtures
are available together with a method for de-
termining V,; [18-20]. This is not the case with
the diffusion coefficient D,. Second, it is easier
to solve a first order nonlinear equation, i.e.
equation (A-9), than to solve a second order
nonlinear equation, ie. equation (A-8) when
D, is a function of a.

For further considerations and additional
results, the reader is referred to references [11-
13].

APPENDIX B

Relation to the Results Obtained with the
Homogeneous Model

It was noted in Section 2.1, that in a two-phase
flow system the velocities of the two phases are
never equal, i.e. there is always a relative velocity
v,, of one phase with respect to the other. How-
ever, in a large number of papers dealing with
various aspects of two-phase flow it has been
assumed that this relative velocity v,, is zero,
i.e. that the two phases flow with the same velo-
city. It has been customary in the literature to
refer to such a flow as being “homogeneous™.

It is the purpose of the appendix to examine
under what conditions it can be expected that
the results, obtained from the “homogeneous
flow” model, will be in agreement with the
experimental data. This will be done by com-
paring the equations derived from the ‘‘homo-
geneous model” to those presented in Section 3.

Since it is assumed in the “homogeneous
flow” model that the relative v,, is zero, equa-
tions (A-6), (A-5) and (A-4) indicate that:

v, =V;=V;=0 (B-1)
Thus, in the “homogeneous flow” model, the
drift velocities of the vapor and of the liquid are
Zero.

It can be seen then from equations (7) and
(8) and equation (B-1) that the velocities of the
vapor and of the liquid are equal to the volu-
metric flux density of the mixture, thus:

v, =V, =] (B-2)

Furthermore, it follows from equations (B-1)

and (18) that in the “homogeneous flow”
model:

(B-3)

{t was shown elsewhere [18] that for the
“homogeneous flow” model the distribution
parameter C,, given by equation (27) has a
value of unity.

We use now the definition of the flow con-
centration given by

Ce=1]J

B =i (B-4)
which can also be expressed as:
(&)
p=—Losen (B-5)

A
Py PgBlsg ¢

If, in accordance with the homogeneous
model, we set C; = 1 and V,; = 0 in equation
(44), we obtain equation (B-5). Thus in the
“homogeneous flow” model:

o= f.

If welet Cy = 1in equation (48) we obtain the
“evaporation time constant” t derived in
references [23, 24] using an approach different
from that developed in Section 3, thus:

L 2 4 (&)
T Py P \A

‘We note that this time constant appears in most
analyses (too numerous to cite them here) deal-
ing with boiling.

Letting C, = 1 in equation (47), and recalling
that « = f§ for “homogeneous flow™ reduces
equation (47) to

t— to:' (B-8)
T

(B-6)

(B-7)

(1 ~ Bpy + Bpy = pyexp [—
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where 1 is given by equation (B-7). This equation
gives the density of the mixture for “homo-
geneous flow™. It was derived also in [25-28]
using a different method.

It can be concluded from the foregoing that
if we let C, = 1 and V,; = 0 in the equations
which were derived in Section 3, then the results
of that section reduce to those obtained pre-
viously for the “homogeneous flow” model.
However, since the drift velocity of the vapor is
never equal to zero it can be concluded that the
results predicted by the ‘‘homogeneous flow™
model will be in satisfactory agreement with the
data only if v; > V,; This will be true for high
mass flow rates. The second condition, i.e. that
C, = 1 is approximately satisfied at high mass
flow rates as well as in the fog flow regime.

Conversely, it can be expected that the great-
est discrepancy between the results predicted
by the “homogeneous flow” model and the
experimental data will occur at low mass flow
rates when the inlet liquid velocity and the
vapor drift velocity are of the same order of
magnitude.

We note further that, in contrast to the results
presented in this paper, the “homogeneous
flow” model does not predict the effect of the
two-phase flow regime on the transient response
of the volumetric concentration. This statement
is based on the fact that for the “homogeneous
flow” model Cy = 1 and V,; = 0 whereas a
change of flow regimes implies changes of both
the distribution parameter C,, and of the vapor
drift velocity V.

Résumé—Différents aspects et différentes caractéristiques de I'équation de propagation des vides sont
discutés. Cette équation permet d’obtenie la réponse transitoire de la concentration volumique aux per-
turbations de (1) la puissance d’entrée, (2) du flux d’entrée, (3) de la pression du systéme, (4) du déséquilibre
thermodynamique, (5) des compressibilités de la vapeur et du liquide et (6) des forces volumiques agissant
sur le mélange diphasique. Cette réponse transitoire est alors 4 la fois fonction des coordonées spatiales

et fonction du temps.

On a obtenu les solutions de 1'équation de propagation des vides pour les conditions opératoires suivantes ;
(1) puissance et flux d’entrée constants, (2) puissance d’entrée oscillatoire, (3) flux d’entrée oscillatoire et

(4) puissance et écoulement oscillatoires.

On montre que les perturbations de la densité du mélange se propagent a travers le mélange diphasique
a la vitesse des ondes cinématiques. Les expressions qui prédisent la vitesse de propagation de ces ondes et
qui correspondent aux conditions opératoires citées ci-dessus sont données.

La vitesse de propagation finie des ondes cinématiques introduit un “retard” qui caractérise la résponse
de la concentration volumique aux différentes perturbations. Les “retards™ propres aux conditions opéra-
toires énumérées ci-dessus sont également présentés. Les résultats prédits sont comparés aux données

expérimentales disponibles avec un accord satisfaisant.

Zusammenfassung—Verschiedene Gesichtspunkte und Charakteristika der Ausbreitungsgleichung des
Dampfes werden diskutiert. Diese Gleichung bestimmt das Ubergangsverhalten der volumetrischen
Konzentration gegen Strorugen (1) der Energiezufuhr. (2) der Einlass-Strémung, (3) des Systemdruckes,
(4) des thermodynamischen Ungleichgewichts, (5) der Kompressibilititen von Dampf und Fliissigkeit
und (6) der auf das Zweiphasengemisch wirkenden Massenkrifte. Dieses Ubergangsverhalten wird fiir

Funktionen des Ortes und der Zeit bestimmt.

Losungen der Ausbreitungsgleichung sind fiir folgende Arbeitsbedingungen hergeleitet: (1) konstante
Energie und Einlass-Stromung, (2) oszillierende Energiezufubr, (3) oszillierende Einlass-Strémung und (4)

oszillierende Energie und oszillierende Strémung.

Es wird gezeigt, dass Stérungen der Gemischdichte im Zweiphasengemisch entsprechend der Gresch-
windigkeit der kinematischen Wellen ausgebreitet werden. Ausdriicke, die den oben angefiihrten Arbeits-
bedingungen angepasst sind und zur Berechnung der Ausbreitungsrate dieser Wellen dienen. werden

angegeben.

Die endliche Ausbreitungsrate der kinematischen Wellen fithrt auf eine “‘Verzogerungszeit™, die das
Ansprechen der volumetrischen Konzentration auf verschiedene Stérungen charakterisiert. Dic zu den
Arbeitsbedingungen gehdrigen **Verzdgerungszeiten™ sind ebenfalls erwihnt.

Die ermittelten Ergebnisse werden mit verfiigbaren Versuchsdaten verglichen. Die Ubereinstimmung

ist zufriedenstellend.
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AHnoTanua—PaccMaTpuBaOTCA PasiMYHBE THIOH M XAPAKTEPUCTHKM ypaBHEHUA Dpacnpo-
CTPaHEHHA NMY3bIPHKOB. ITO YPABHEHME ONpee/ifeT HEYCTAHOBUBINYIOCA PEAKIMI0 00BEMHON
KOHIIEHTpAanuu Ha Bosmywenusa (1) mopBommmolt MomHOCTH, (2) BXOZALETO HOTOKA, (3)
JaBIeHUA cucTeMbl, (4) TEPMOAMHAMMYECKOrO0 HepaBHOBecHA, (D) CHUMAEMOCTH mHapa M
HUIKOCTH U (6) MaccoBBIX CHJI, JeHCTBYIOIMX Ha ABYX(a3HYl cMechb. JTa HEYCTAHOBHMB-
WIAACA PEAKLHA ONmpeleena Kak QyHKUNA TPOCTPAHCTBA H BPEMEHH.

Pewrenus ypaBHeHHA PacrpoCcTPaHeHUs My3bLIPbKOB BHIBEJEHBl IJIA CIeXYIOMMX padounx
ycaoBuii : (1) MOCTOSANHBlE MOHNIHOCTH M BXOAALMI MOTOK, (2) OCIULIINDYIONAA NOABONUMAA
MOILHOCTD, (3) oclpuIInpY oMl BXOJAIME NOTOK, (4) OCIMIIMPYI0aA MOIHOCTh I OCLIUII-
JNPYIOIHA NOTOK.

[Toxasano, YTO BO3BMYIUEHMA IUIOTHOCTM CMeCH DPACHPOCTPAaHAKTCH yepesd AByX(asHyo
CMeCh CO CKOPOCTHIO KUHEMATHYECKIX BOTH. [TpHUBOIATCA BhIparKeHHA, 10 KOTOPBIM PaCCYUTHI-
BaeTCH CKOPOCTb PACTPOCTPAHEHMA DTHX BOJH M KOTOPHE COOTBETCTBYIOT NMepPedMCIIEHHBIM
BBIIE PADOYMM YCJAOBHAM.

Koneunas cKOpOCTE pACPOCTPAHEHMA KHHEMATHYECKHX BOJIH BBOJAHT «BpPeMA 3ama3ibl-
BaHUA», KOTOPOe XAPAKTEePI3YET peakniio 00LEMHON KOHIIEHTPAINH HA Pa3IH4YHEEe BOBMYILe-
i, ITpuBoINTCA «BpeMs 3ama3bIKAHIA», COOTBETCTBYIOIlee DAaGOMHM YCIOBHAM, Nepe-
dHCAeHbY BHMe,

CpaBHenne NOJIYYEHHBIX DPEIYJbTATOB € MMEIOUMMHCA OKCNEPHMEHTAJLHBIMH [AAHHBIMH

N0KA3LIBAeT Y10BIeTBOPHTEILHOE COOTBETCTBHE MEMAY HIMIL.
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